"Sveti Gral" čiste energije
Eksperiment o kome se priča |
Posle više od 60 godina neprekidnih istraživanja, konačno je napravljen jedan od ključnih prodora na polju nuklearne fuzije. U zajedničkom saopštenju Ministarstva za energetiku SAD i nacionalne laboratorije “Lorens Livermor” ističe se da je tokom decembra u institutu pod imenom “National Ignition Facility” na severu Kalifornije po prvi put ostvarena nuklearna fuzija s “pozitivnim energetskim bilansom”. Drugim rečima, reakcija je proizvela više energije nego što je u nju direktno uloženo. U jedom kratkom deliću sekunde stvoreno je Sunce na Zemlji.
Fuzija je potencijalni izvor veoma čiste energije i zasniva se na fuziji (spajanju) izotopa vodonika u helijum, neškodljiv inertni gas (identičan proces dešava se na Suncu). Delić mase vodonika pritom se konveruje u energiju, u skladu s Ajnštajnovim principom ekvivalentnosti mase i energije, E=mc2. Proces za sobom ostavlja zanemarljivu količinu radioaktivnog otpada koji pravi toliko problema u eksploataciji atomske energije zasnovanoj na fisiji (cepanju) atoma uranijuma ili plutonijuma. Emisija ugljen-dioksida i štetnih gasova staklene bašte ravna je nuli.
Eksperiment izveden u Americi predstavlja pravo inžinjersko čudo na koje je, samo do sada, potrošeno preko 3 milijarde dolara. Za pokretanje nuklearne fuzije upotrebljen je snop od 192 lasera sa ukupnom energijom od 2 megadžula (toliko, otprilike, potroši fen za kosu tokom 15 minuta). Možda deluje malo ali tu energiju laseri isporuče tokom svega par nanosekundi aktivnosti. Vremenska i prostorna koordinacija lasera dovedeni su do savršenstva: snop laserskih zraka skoncentrisan je u unutrašnjost minijaturnog valjkastog kontejnera načinjenog od zlata u kome se nalazi kuglica nuklearnog goriva veličine zrna bibera. Kuglica ima omotač od dijamanta a u njenoj unutrašnjosti nalazi se nuklearno gorivo, mešavina deuterijuma i tricijuma (izotopa vodonika) ohlađenih do tačke smrzavanja. Da bi se gorivo “natočilo” u kuglicu koristi se cev čiji je prečnik pedesetak puta manji od debljine vlasi kose. Kada laserski zraci obasjaju zlatni kontejner iznutra, dolazi do njegovog intenzivnog zagrevanja i emisije X-zraka koji padaju na kuglicu goriva i dovode do njenog brzog zagrevanja i kompresije.
Temperatura goriva dostiže nekoliko miliona stepeni a kuglica goriva implodira sve dok se ne skupi na delić svoje prvobitne zapremine pri čemu gustina goriva prevazilazi gustinu olova. Na ovako visokim temperaturama i pritiscima pozitivno naelektrisana jezgra vodonika imaju dovoljno veliku brzinu da prevladaju silu elektrostatičkog odbijanja i spoje se u jezgro helijuma. Masa goriva nešto je veća od mase prozivoda nuklearne reakcije a razlika se pretvara u energiju. I tako je oslobođeno nešto više od 3 megadžula energije, upadljivo više od 2 koliko su laseri inicijalno isporučili u zlatni kontejner.
Tako je, po prvi put, praktično dokazano da je iz kontrolisane nuklearne fuzije moguće izvući više energije nego što je u nju uloženo. Kada na sve ovo dodamo činjenicu da su laseri korišćeni u eksperimentu relativno stari (za njihov smeštaj upotrebljen je prostor veličine fudbalskog igrališta), da su proizvod tehnologije koja je postojala krajem prošlog veka, ostaje nam da sa još većim optimizmom gledamo na buduće eksperimente u kojima će biti upotrebljeni manji i snažniji laseri najnovije generacije. Fuzija, koja odavno predstavlja “sveti Gral” čiste energije koji nam neprekidno izmiče, danas nam je bliža nego ikad.
Koliko je ovaj “laserski” pristup perspektivan? I pored epohalnog rezultata od pre par dana, i dalje postoje značajni razlozi za suzdržanost. Laseri su nesumnjivo koristan tehnički izum koji je prilično izmenio svet u kojem živimo. Ali ostaje činjenica da su oni energetski neefikasni: energija koja se utroši na generisanje laserskog snopa stotinak puta je veća od energije koju taj snop sa sobom nosi. Zato spektakularni rezultat sa početka ovog teksta treba uzeti sa velikom dozom rezerve: kada se uporedi energija oslobođena fisijom sa energijom potrebnom za pogon lasera, kompjutera i druge prateće opreme, energetski bilans je i dalje ubedljivo negativan. A da bi fuzija bila komercijalno upotrebljiva neophodno je da generiše 30 puta više energije nego što troši. Teško dostižan cilj za nuklearnu fuziju čiji se budući stepen korisnog dejstva procenjuje na 10-20% (ilustracije radi, običan automobilski motor može da dostigne i svih 40%).
Zato neki od naučnika smatraju da laseri neće moći da se koriste kao deo komercijalnog sistema za proizvonju energije “ni sad, ni za milion godina, nikad”. Uz to, eksperiment je stvorio višak energije koji je dovoljan da se desetak čajnika ugreje do tačke ključanja. Ali, gde je sva ta energija otišla? Raspršila se i nestala istom brzinom kao što je i nastala jer - trenutno nemamo rešenje kako da je prikupimo niti znamo kako da održimo njen kontinuirani priliv (da bi generisana energija postala značajna, laseri bi, umesto par puta dnevno, morali da “upucaju” 10-20 vodoničnih meta u minutu).
Da li smo, zaista, na pragu nove energetske ere u kojoj će konačno početi da dominiraju čisti izvori energije koji ne generišu dodatne količine ugljen-dioksida? Deuterijum izolovan iz jednog litra obične vode može da generiše energiju ravnu onoj koja se može dobiti iz 300 litara benzina. Mogućnosti nuklearne fuzije su neslućene, kako u pogledu količine tako i u pogledu kvaliteta (čistoće) proizvedene energije ali mi još uvek nismo sigurni da se kladimo na pravog konja. Jer, istorija je, bar kada je civilna eksploatacija nuklearne fuzije u pitanju, prepuna razočarenja koja su se ponavljala u skoro pravilnim vremenskim intervalima.
Fizičar Džon Kokroft izjavio je 1958. godine da će njegov projekat fuzionog reaktora “Zeta” svetu podariti neograničenu količinu jeftinog goriva. Nije se desilo. Martin Flajšman i Stenli Pons senzacionalno su objavili 1989. godine da su ostvarili nuklearnu fuziju na sobnoj temperaturi pomoću aparature koja se može sklopiti od delova iz garaže. Međutim, nijedan naučnik nikad nije uspeo da ponovi rezultate ovog eksperimenta tako da su Flajšman i Pons na kraju optuženi za nesavestan naučnički rad. Dodajte na spisak i ITER (videti okvir), međunarodni projekt toroidnog fuzionog reaktora koji još uvek nije funkcionalan pa ćete shvatiti u kakvoj se magli još uvek nalazi nuklerna fuzija. Kad god se iznose predviđanja, fuzija je uvek tu iza ćoška, “dve ili tri decenije daleko”. I uvek će biti, dodali bi skeptici.
Dobro je što je nuklearna fuzija ponovo na stranicama novina i naučnih časopisa, što se uz naučne ustanove za nju sve više interesuju i privatne kompanije kao što je “Amazon”, ali to ne znači da je uspeh brz i zagarantovan. Američki političari zasad podupiru ova istraživanja, postoji čak i zvanični dokument o tome koji je objavljen u aprilu i garantuje finansijsku potporu države. Činjenica je da su sada svi ispunjeni ushićenjem i optimizmom ali malo realnosti, ipak, nije na odmet. Ne stoje superlativi da je pomenuto dostignuće američke laboratorije jedno od najvećih u XXI veku. Tačno je da smo sada probili psihološku barijeru time što smo pokazali da je nuklearna fuzija moguća. To saznanje menja sve, sa ogromnim pozitivnim efektom na buduća istraživanja bez kojih bi postignuti rezultat bio bezvredan. Ali, reklo bi se da smo u ovom veku ipak videli i neka mnogo veća i značajnija naučna ostvarenja: oktriće Higsovog bozona, vakcinu protiv kovida-19, lansiranje kosmičkog teleskopa “Džejms Veb”, dešiforvanje ljudskog genoma...
Zaključak se sam nameće: ako nameravamo da se ozbiljno bavimo narastajućom energetskom krizom i globalnim zagrevanjem koje će do kraja ovog veka verovatno preći 2oC, moramo da se oslonimo na tehnologiju kojom već raspolažemo. A to su atomska fisija, sviđalo nam se to ili ne, i obnovljivi izvori energije kao što su sunce, plima ili vetar. Jedino tako, uz radikalno odricanje od uglja i nafte, možemo da se uhvatimo u koštac s klimatskim promenama, ekstremnim vremenskim prilikama, narastanjem nivoa mora, poplavama i epidemijama. Nuklearna fuzija neće stići na vreme da spase svet. I dalje je par decenija ili pola veka daleko. Moramo da delujemo već danas jer će sutra, kada nuklearna fuzija konačno prestane da bude bajka, verovatno biti dockan.
Hod po trnju
ITER u izgradnji |
Današnja istraživanja nuklearne fuzije odvijaju se u dva praktično nezavisna pravca. Prvi pristup, o kome se sada toliko piše, podrazumeva bombardovanje male mete načinjene od nuklarnog goriva laserskim zracima sve dok u njemu ne otpočne nuklearna reakcija. Drugi pravac istraživanja podrazumeva masivne reaktore u kojima je fuziono gorivo pretvoreno u naelektrisanu plazmu koja se zagreva i kontroliše pomoću složenog magnetnog polja.
Izučavanje nuklearne fuzije kao potencijalnog izvora energije započelo je radovima Etkinsa i Hautermana 1929. godine. Oni su, precizno mereći mase najlakših hemijskih elemenata i njihovih izotopa, predvideli da se spajanjem lakših elemenata u teže mogu dobiti velike količine energije, u skladu sa Ajnštajnovim jednačinama. Deset godina kasnije, fizičar Hans Bejt dobio je Nobelovu nagradu za kvantitativnu teoriju fuzije. Bejt je prvi pokazao da je za proces nuklearne fuzije potrebna temperatura koja se meri milionima stepeni. Pri ovako visokim temperaturama, elektroni bivaju izbačeni iz svojih atomskih orbitala tako da je materija potpuno jonizovana i nalazi se u agregatnom stanju koje fizičari nazivaju plazmom. Kada temperatura dostigne kritičnu granicu, energija kretanja atomskih jezgara dovoljno je velika da prevlada odbijajuće sile između njih i fuzija postaje moguća.
Put od teorije do prvih praktičnih rezultata bio je trnovit. Vrelu plazmu je, naime, nemoguće kontrolisati sudovima sa čvrstim zidovima, s obzirom da govorimo o temperaturama uporedivim sa onim koje vladaju u Sunčevom jezgru. Fizičari su relativno brzo došli na ideju da jonizovanu plazmu izoluju i komprimuju u "nevidljivom sudu" čije bi zidove činile strujnice jakog magnetnog polja, ali je prva magnetna komora, skromnih domena i rezultata, konstruisana tek 1947. godine na Imperijal koledžu u Londonu.
Tokamak |
Od 1953. godine Amerika, Britanija i SSSR eksperimentišu sa tzv. Zeta reaktorima povremeno objavljujući vesti o značajnim uspesima na polju kontrolisanja plazme. Nažalost, mnoga tadašnja "dostignuća" i "otkrića" ubrzo su demantovana ili svedena u daleko skromnije okvire što je krajem 1958. godine dovelo do definitivnog napuštanja koncepta Zeta reaktora kao nedovoljno perspektivnog. Višegodišnji uzaludni napori imali su veliki uticaj na ponašanje svetskih velesila koje su, čak i u tadašnje vreme hladnog rata i sveopšteg nepoverenja, rešile da obelodane svoja saznanja na polju fuzije i koordinišu dalja istraživanja.
Ključni prodor ostvaren je 1968. godine u SSSR-u kada su Andrej Saharov i Igor Tam konstruisali prvi "tokamak" (ruska skraćenica za "toroidnu komoru unutar magnetnih kalemova") i u njemu uspešno kontrolisali plazmu čija je temperatura bila za red veličine veća od očekivane. Kada su ovi rezultati na licu mesta provereni i potvrđeni od strane vidno impresioniranih zapadnih stručnjaka, koncept tokamak reaktora postao je dominantan, inspirišući brojne generacije naučnika sve do današnjih dana.
Početkom 1976. godine Evropa počinje da radi na projektu tokamaka pod nazivom JET (skraćenica za "združeni evropski torus") koji kao gorivo koristi mešavinu vodonikovih izotopa. Evropska zajednica je 1978. godine odobrila izgradnju reaktora na napuštenom aerodromu britanske avijacije u Oksforširu, a prvi eksperimenti započeli su pet godina kasnije. JET je imao značajne rezultate, pri čemu je svakako najznačajniji onaj iz 1997. godine kada je reaktor u vršnom opterećenju generisao rekordnih 16MW snage. Ipak, ova energija predstavljala je tek 70% energije potrebne za rad, što znači da je reaktor i dalje trošio više energije nego što je proizvodio.
U prošlosti je bilo još sličnih reaktora, pri čemu je svaki imao poneko značajno dostignuće: engleski "Start" (plazma rekordno visokog pritiska, 1991), američki TFTR (ostvario kontrolisanu fuziju snage 10MW, 1994), Francuski "Tore Supra" (sposoban da održi plazmu u stabilnom stanju duže od dva minuta, 1996), Japanski "JT-60" (prvi reaktor koji je, makar za kratko, imao pozitivan energetski bilans, 1998). Ipak, nijedan dizajn reaktora nije uspeo da objedini dobre elemente svih ostalih i tako ostvari krajnji cilj: stabilnu plazmu i dugotrajnu kontrolisanu nuklearnu fuziju koja generiše više energije nego što troši.
Zašto Sunce sija
Sve do XIX veka nije bilo pokušaja da se na naučno zasnovan način objasni zbog čega Sunce sija. Suncem kao nebeskim telom bavili su se jedino astrolozi, mitolozi, teolozi i ostala dogmatska “inteligencija”. O suncu kao izvoru života govori se tek 1833. godine u radovima čuvenog astronoma Džona Heršela: "Sunčevi zraci osnovni su uzrok praktično svakog kretanja koje se dešava na zemljinoj površini. Zahvaljujući njegovoj oživljujućoj snazi iz neorganske materije nastaju biljke, bez kojih nema ni životinja, ni ljudi, ni ogromne energije stavljene ljudima na raspolaganje u vidu naslaga uglja."
Koliko je Sunce staro? I zbog čega sija? Heršel nije uspeo da definiše neki konkretan odgovor na ova dva večita pitanja, ali je prvi shvatio koliko su ona međusobno povezana. Količinu energije koju Sunce isijava relativno je lako odrediti merenjem intenziteta sunčeve svetlosti na zemljinoj površini. Ako znamo koliko je Sunce staro, možemo da odredimo i koliko je energije ono ukupno do sada emitovalo u kosmos. Što je Sunce starije, potrebni su sve jači izvori energije kako bi održali njegov konstantan sjaj tokom sve dužeg vremenskog perioda.
Zahvaljujući entuzijazmu jednog nemačkog profesora psihologije, a kasnije velikog fizičara, Hermana fon Helmholca, polovinom XIX veka uvrežilo se shvatanje da je Sunčevo zračenje posledica sažimanja njegove materije pod dejstvom gravitacionih sila. Međutim, glavni impuls ranom izučavanju prirode Sunčeve energije dao je, sasvim neočekivano, Čarls Darvin, autor ideje o evolutivnom nastanku i razvoju živog sveta na Zemlji. Darvin je bio svestan da je za evoluciju potrebno veoma dugo vreme, pa je u svom čuvenom delu “O nastanku vrsta prirodnom selekcijom” pokušao da odredi neke konkretne brojke. Posmatrajući brzinu erozije jedne doline u južnoj Engleskoj, Darvin je izračunao da će prirodi biti potrebno bar 300 miliona godina da je potpuno izbriše sa lica zemlje, što je dovoljno sporo čak i za najsporije evolutivne procese.
Darvinova procena unela je veliku nelagodnost među astronome: ako se starost Zemlje zaista meri stotinama miliona godina, Sunca mora biti još starije. Ako je Sunce zaista toliko staro, onda je još teže objasniti šta je uzrok njegove ogromne snage. U raspravu se uključio i lord Kelvin, čuveni fizičar koji je formulisao drugi zakon termodinamike i formirao apsolutnu temperaturnu skalu. Kelvin je bio veliki Darvinov protivnik i odmah je osporio njegovu procenu brzine geoloških procesa. Kelvin, doduše, priznaje da nikakva hemijska reakcija ne može biti izvor Sunčeve svetlosti s obzirom na to da "čak ni najžešća reakcija supstanci u količini ravnoj Sunčevoj masi ne bi potrajala duže od 3000 godina". Kao izvor Sunčeve energije Kelvin, kao i Helmholc, u prvo vreme ističe gravitacionu energiju Sunčeve mase. Međutim, pritisnut astronomskim dokazima iz kojih sledi da ovako osmotrena gravitaciona energija ne bi potrajala dovoljno dugo, Kelvin 1862. godine modifikuje svoju teoriju i s velikom ubedljivošću i elokvencijom tvrdi da Sunčeva energija nastaje kao plod udara bezbrojnih meteorita o Sunčevu površinu. S obzirom na to da je kosmos praktično neiscrpan resurs meteorita, Kelvin je smatrao da je na ovaj način objasnio izvor Sunčevog zračenja tokom, otprilike, 20 miliona godina. "Ko smo mi", pita Kelvin, "pa da, kao Darvin, tvrdimo da nešto može da traje 300 miliona godina?"
Nakon otkrića radioaktivnosti, Darvin je pokušao da uzvrati udarac tvrdeći da Sunce svoju energiju duguje radioaktivnim procesima koji se zbivaju u njegovoj unutrašnjosti. Podržali su ga i mnogi fizičari, poput Ernsta Radeforda koji je prvi izmerio energiju alfa-čestica. Međutim, kada su astronomi ponovo okrenuli svoje instrumente ka Suncu, utvrdili su da tamo ima vrlo malo radioaktivnih materija. Sunce je, kao i čitav kosmos, uglavnom sačinjeno od lakih, stabilnih elemenata: vodonika i helijuma.
Napretka nije bilo sve dok 1905. godine kada je Ajnštajn pokazao da su masa i energija samo dva različita oblika postojanja materije. Drugi ključni proboj napravio je F. W. Aston, koji je preciznim eksperimentom utvrdio da je masa četiri atoma vodonika nešto veća od mase jednog atoma helijuma.
Ove dve činjenice povezao je u jednu celinu briljantni engleski astrofizičar Artur Edington 1920. godine. Po njemu, izvor Sunčeve energije mogao bi biti proces fuzije (spajanja) četiri atoma vodonika u jedan atom helijuma. S obzirom na to da je masa materije na početku procesa fuzije veća od mase na kraju, nedostajuća masa manifestovala bi se, shodno Ajnštajnovoj relaciji, kao energija Sunčevih zraka. Po Edingtonu, konverzija svega 0,7% mase Sunca u energiju dovoljna je da mu obezbedi neumanjen sjaj tokom najmanje 100 milijardi godina. Edington je prvi shvatio kakav se strašan potencijal krije u energiji fuzije i predvideo da, pod uslovom da je u pravu, ova energija može biti iskorišćena "na dobrobit čovečanstva, ali i za njegovo samoubistvo". Kada je Edvard Teler konstruisao prvu fuzionu (hidrogensku) bombu, Edingtonova upozorenja samo su dobila na težini.
Hans Bete |
Beteova teorija kasnije je i eksperimentalno potvrđena kada su na Zemlji detektovani solarni neutrini emitovani tokom procesa fuzije (njihov broj i prirodu prvi su objasnili Rejmond Dejvis i Masatoši Košiba koji će za to dobiti i Nobelovu nagradu 2002. godine). Kako proračuni pokazuju, Sunce svake sekunde konvertuje 600 miliona tona vodonika u helijum pri čemu oko 4 miliona tona “nestane”, tj. biva pretvoreno u energiju, u skladu sa čuvenom Ajnštajnovom jednačinom. Sunce nije naročito efikasan generator: jedan kubni metar Sunca jedva da obezbeđuje energiju za rad jedne standardne sijalice. Ali kada na to dodate činjenicu da je zapremina Sunca oko milion puta veća od zapremine Zemlje, lako se izračuna da je Sunce kolosalni izvor energije. Kada uzmemo u obzir raspoložive količine vodonika na Suncu, sigurno je da će ono sijati kao i dosad bar još 4-5 milijardi godina. A posle, videćemo...
Vreme #1668